
In the previous columns, we
have examined the process of

writing our own visual and non-
visual components. This time,
we’ll focus on some additional
techniques that are helpful during
component building. In addition,
we’ll examine the finishing touch
of every component: a nice
custom bitmap for the component
palette.

We’ll now develop a new edit box
component: one that is single line
and yet capable of right-aligned
text. Normally, this combination is
impossible (one of Windows’
delicate blunders), but with a little
hocus-pocus, we can make it work
anyway. First of all, we need to
derive from the existing TMemo (and
not TEdit – the reason will become
clear!). Just start Delphi, select
File | New Component from the
menu, and fill it in just like Figure 1.

As soon as we click OK, we’re in a
new source file with the compo-
nent skeleton source code. Let’s
save this file as TREDIT.PAS
somewhere in our Delphi search
path. Now we can make our modi-
fications to the new TRightEdit
component. In order to find the
right properties to modify, select
the text TMemo in the source editor,
and press Control F1 to get the
on-line help for the standard TMemo
component. The properties pop-up
page shows the property Alignment
of type TAlignment, with three pos-
sible values: taLeftJustify (the de-
fault), taCenter and taRightJustify.
It’s this property we’re interested
in here. Note that we could not use
a TEdit, since this property is not
available for a TEdit, but only for a
TMemo, TLabel or TPanel.

Specialising
So, we know what we need to
change for our TRightEdit, but now
the question is how do we change
it? In order to set the property

Alignment to an initial value of
taRightJustify, we need to
override the constructor for the
TMemo. Since almost every
component has a constructor of
the form

constructor X(AOwner:
  TComponent); virtual;

we just repeat this code in the
public section of our TRightEdit
component. The implementation
of this constructor is easy (see
Listing 1). First we need to call the
inherited constructor to make sure
the TMemo stuff is constructed all
right, then we can go ahead and
customise the TRightEdit compo-
nent by setting the Alignment
property to taRightJustify.

Will this be enough? Let’s test it
by installing the component onto
the component palette. Select
Options | Install Components from
the menu and Add the TREDIT.PAS
source file to the list. After compil-
ing, we have a new component on
the Dr.Bob palette page. If we drop
this component onto a form,
however, we see that not only is the
text right-aligned, we also get a
component with the same initial
size as a TMemo, ie multi-line instead
of single line. We need to set the
initial size of the component!

Customisations
Let’s go back to the source of the
TRightEdit component. Apart from
the initial size, we have to make
sure the component cannot be
resized to anything higher than a
single line. How high can a single
edit line become? Well, something
just below twice the font size, I’d
say. If we want to make sure the
component size stays within that
range, we can override the
SetBounds method, which applies to
just about all VCL controls. The
declaration is as follows (again in
the public section):

procedure SetBounds(ALeft,
  ATop, AWidth, AHeight :
  Integer); override

SetBounds sets the component’s
boundary properties (Left, Top,
Width and Height) to the values
passed in ALeft, ATop, AWidth and
AHeight respectively. SetBounds
enables us to control all of the
component’s boundary properties
in one place, as it will be called for
each re-size event! The implemen-
tation of SetBounds can be found in
Listing 2. Note that we use the
absolute value of the Height sub-
property of the Font property,
since the Height can become
negative for some font types!

Under Construction:
Customising Controls
by Bob Swart

procedure TRightEdit.SetBounds(ALeft, ATop, AWidth, AHeight: Integer);
begin
  if AHeight > (2 * abs(Font.Height)) then AHeight := 2 * abs(Font.Height);
  inherited SetBounds(ALeft, ATop, AWidth, AHeight);
end;

➤ Listing 2  Procedure SetBounds

constructor TRightEdit.Create(AOwner: TComponent);
begin
  inherited Create(AOwner);
  Alignment := taRightJustify;
end;

➤ Listing 1 Constructor TRightEdit.Create

September 1995 The Delphi Magazine 21



Design Versus Run Time
If you’ve made the changes from
Listing 2 in the source code of the
TRightEdit but did not install the
component on the palette again,
you’ll notice that the TRightEdit
component will size correctly at
run-time, but still has the old
behaviour at design time.

In order to make sure the
SetBounds procedure is used at
design time too, we have to  install
the component again by using
Options | Install Component. This
time, just a click on the OK button
will do, since TREDIT.PAS is
already in the installed list of
components.

Now, if we drop a TRightEdit
component on a form, it immedi-
ately gets the correct height. We
can also try to resize it by hand, or
any other way, and it just keeps
bouncing back (see Figure 2).

So, What Have We Learned?
It seems we have learned that we
can actually have two “behaviours”
of a component: one at design time
(from the component that’s inside
the COMPLIB.DCL) and one at run-
time (here, a possible source or
.DCU file overrides the code in the
COMPLIB.DCL).

Generally, we can simply use the
Component Expert to derive our
new component and immediately
install the new (empty) component
skeleton code into the component
palette. This will give us the initial
design time component behaviour
(from the base class). Any
additional code can be added and
tested at run-time (and not at
design time, yet).

This has two benefits: first of all,
it won’t be necessary to rebuild the
entire COMPLIB.DCL every five
minutes, and second, we don’t
have to be afraid of accidentally
“breaking” COMPLIB.DCL (I once
wrote a component that generated
a stack fault inside COMPLIB.DCL;
in such an event, all you can do is
re-install the backup copy of your
COMPLIB.DCL and don’t try install-
ing the component again, which
will generate a new backup of your
already corrupt COMPLIB.DCL –
again, as I did once). [The answer is
to make your own backup copy of a

➤ Figure 2  SetBounds in Action

➤ Figure 1
Component
Expert

working COMPLIB.DCL, eg to
COMPLIB.BKK, before installing any
new components.  Editor]

Are We Done Yet?
Not by a long shot! Just have a look
at the Object Inspector when our
new TRightEdit is selected. A whole
bunch of properties that are
actually TMemo specific and have
nothing to with a single one-line
right-aligned edit box. You can
compare the properties from a
TEdit and TRightEdit in Figure 3.

Specifically, I would like to hide
the following properties: Align,
Alignment, Lines, ScrollBars,
WantReturns, WantTabs and
WordWrap. Of course, we also have to
make sure these properties are
initialised to a sensible value.

We also seem to be missing the
following TEdit specific properties:
AutoSelect, AutoSize, CharCase,
PasswordChar and Text. Let’s start
with these first.

Adding New Properties
Adding new properties to our
TRightEdit component is not hard
to do. First of all, the five missing
properties are already defined in

the TCustomEdit base class. This
class is the base class of TEdit, but
also of the TCustomMemo, TMemo and
our TRightEdit class. The
TCustomXXX classes are just the
same as their TXXX counterparts,
except for the fact that the proper-
ties of a TCustomXXX class are all
public instead of published. So,
they’re here, but you can’t see
them in the Object Inspector.

In order to visualise them again,
we can re-declare them in the pub-
lished section of our TRightEdit
component, as shown in Listing 3.

If we compile the new compo-
nent and fire up the Object
Browser (in the Views menu), we
can see that the five new properties
appear for our TRightEdit
component.

But will this be enough? If we set
the Text property, do the contents
of the TRightEdit change also?
Surprisingly enough, yes. We can
even use both the Text and the
Lines properties at the same time!
It seems that both properties are
actually only “wrappers” around
the standard Windows edit
control, and both get their value (ie
their contents) from this edit

22 The Delphi Magazine Issue 3



control. This is also the reason, by
the way, why a TMemo can never
hold more than about 32K charac-
ters: another nice limitation of
16-bit Windows! Also note that the
Text property is actually the sum of
the Lines, with a CR-LF pair added
after each line. These two
non-printable characters cannot
be shown by Windows and are rep-
resented by two little black boxes
in the value of the Text property. In
order to solve this problem, we’ll
have to make sure the Lines
property disappears, so the only
access method to the internal data
of the Windows control is the Text
property.

For TRightEdit, this will make the
Text property work the same way
as for a normal TEdit. I consider the
other four properties to be less
important, so I leave them to you to
implement (if you feel you need
them – have a look at the original
VCL source code for TEdit if you
need hints how to do it). They are
published, but not all are actually
working (the PasswordChar prop-
erty, for example, doesn’t have any
effect for our TRightEdit – but I
wouldn’t want to use a right aligned
field to type a password anyway).
The CharCase property is the only
one that also works by default.

Property Censorship
It seems that in order to let the Text
property work without problems,
we have to somehow disable or
hide the Lines property. But how

➤ Figure 3
Properties
of TEdit and
TRightEdit

type
  TRightEdit = class(TMemo)
  private 
    { Private declarations }
  protected
    { Protected declarations }
  public
    { Public declarations }
    constructor Create(AOwner:
      TComponent); override;
    procedure SetBounds(ALeft,
      ATop, AWidth, AHeight:
      Integer); override;
  published
    { Published declarations }
    property AutoSelect;
    property AutoSize;
    property CharCase;
    property PasswordChar;
    property Text;
  end;

➤ Listing 3
Published properties

can we hide properties? The
manual clearly states that it should
be considered impossible to
“de-publish” properties. Well, this
doesn’t seem to be the case. A
simple re-declaration of the
properties, only this time in the
protected section (or any section
other than the published section)
will seem to have exactly the effect
we want, as shown in Listing 4. The
properties will still be accessible at
run-time and should be no longer
be visible at design-time. Let’s
check this to be sure...

If we install the new TRightEdit
component from Listing 4 and
check the Object Browser again,
we see that the seven to-be-
unpublished properties are indeed
marked as protected, just as we
wished. If, however, we drop a
TRightEdit component on a form
and check the Object Inspector, we
see in horror that the un-wanted
properties are still available and
hence remain published.

Could this perhaps be a bug in
the Object Browser or in the Object

Inspector? A closer look at the
internal working of Delphi’s run
time type information (RTTI)
provides us with the answer: each
component’s RTTI lists the proper-
ties it publishes. When searching
for a property name, RTTI scans
the object, then each of its ances-
tors in turn. No matter what you
do, you can’t change the ancestors’
RTTI info, and the property will be
found. So it seems that the RTTI
published-list works like a black
list: once you’re on it there’s no
way to get off it!

Methinks the Object Browser
should also use RTTI better to
show the properties as published
instead of protected, by the way
(Borland, are you reading this?).

TCustomXXX
Of course, there are usually more
ways to solve a problem in Delphi
than one! In this case, we could
have derived our TRightEdit from
TCustomMemo instead of from TMemo.
Then, all our properties would
have been hidden, including the

24 The Delphi Magazine Issue 3



unit Tredit;

interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, StdCtrls;
type
  TRightEdit = class(TMemo)
  private     { Private declarations }
  protected   { Protected declarations }
    property Align;
    property Alignment;
    property Lines;
    property ScrollBars;
    property WantReturns;
    property WantTabs;
    property WordWrap;
  public      { Public declarations }
    constructor Create(AOwner: TComponent); override;
    procedure SetBounds(ALeft, ATop, AWidth, AHeight :
      Integer); override;
  published   { Published declarations }
    property CharCase;
    property Text;
  end;
procedure Register;

implementation

constructor TRightEdit.Create(AOwner: TComponent);
begin
  inherited Create(AOwner);
  Align := alNone;
  Alignment := taRightJustify;
  ScrollBars := ssNone;
  WantReturns := False;
  WantTabs := False;
  WordWrap := False;
end;

procedure TRightEdit.SetBounds(ALeft, ATop, AWidth,
AHeight: Integer);
begin
  if AHeight > (2 * abs(Font.Height)) then
    AHeight := 2 * abs(Font.Height);
  inherited SetBounds(ALeft, ATop, AWidth, AHeight);
end;

procedure Register;
begin
  RegisterComponents(’Dr.Bob’, [TRightEdit]);
end;
end.

➤ Listing 4  Almost-final TRightEdit (without the three non-working properties)

unit TRedit;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Menus, Dialogs, StdCtrls;
type
  TRightEdit = class(TCustomMemo)
  private   { Private declarations }
  protected { Protected declarations }
  public    { Public declarations }
    constructor Create(AOwner: TComponent); override;
    procedure SetBounds(ALeft, ATop, AWidth, AHeight:
      Integer); override;
  published { Published declarations }
    property BorderStyle;
    property CharCase;
    property Color;
    property Ctl3D;
    property Cursor;
    property DragCursor;
    property DragMode;
    property Enabled;
    property Font;

    property Height;
    property HelpContext;
    property HideSelection;
    property Hint;
    property Left;
    property MaxLength;
    property Name;
    property OEMConvert;
    property ParentColor;
    property ParentCtl3D;
    property ParentFont;
    property ParentShowHint;
    property PopupMenu;
    property ReadOnly;
    property ShowHint;
    property TabOrder;
    property Tag;
    property Text;
    property Top;
    property Visible;
    property Width;
  end;

➤ Listing 5  Final class definition for TRightEdit (implementation is the same as Listing 4)

ones we would like to hide now. We
just have to re-publish all the
properties we need in order to get
the same end result. That’s the
main reason why the TCustomXXX
classes exist: to allow Component
Builders to easily customise the
basic VCL components.

The final class definition for our
TRightEdit component, now based
on a TCustomMemo, is seen in Listing
5. Note that we now derive from a
TCustomMemo and only need to
re-publish the properties we want,
using our earlier technique.

If you’ve read the source code of
Listing 4, you will notice that it
already contains the last thing we
must not forget if we un-publish

properties: giving them an initial
value. Since the designer cannot
give these properties an initial
value, we (the programmer of the
component) need to make sure the
hidden properties have a sensible
value assigned at creation time.

Component Palette Bitmaps
Now that we’ve designed and
implemented a new component,
one more thing we need to do is
give it a unique Component Palette
bitmap. Every component needs a
bitmap to represent itself on the
Component Palette. If a component
does not have a bitmap specified,
Delphi uses the bitmap of the
ancestor (back to TComponent itself,

if necessary). That’s why the
components from the first issue all
had the same bitmap on the
palette. If it wasn’t for hints, we
would never have been able to
distinguish between them.

In our case, the TRightEdit has
the same bitmap as its parent,
TMemo. Since our component is not
a memo but a right aligned edit, we
really need to give it a more fitting
bitmap. A palette bitmap for a
component is in fact very easy to
create: all we need to do is to make
a Windows (compiled) resource
file with a 24x24 bitmap. My
preference is to use Resource
Workshop, since I already have a
lot of experience with this tool (it

September 1995 The Delphi Magazine 25



is not part of Delphi itself, but
comes with Borland Pascal,
Borland C++ and is also part of the
RAD Pack for Delphi).

We start a new project for a .RES
file and create a new BITMAP
resource (24x24, 16 colour) for our
TRightEdit bitmap (see Figure 4).
There’s only one more thing we
have to make sure of: the name of
the BITMAP resource itself must be
the name of the component:
TRIGHTEDIT in our case.

Resource Workshop by default
saves this file as a .RES file, which
we must rename to a .DCR file. The
.DCR file needs to have the same
prefix as the unit file: TREDIT. The
TREDIT.DCR file needs to be

➤ Figure 4
Creating the
palette bitmap
in Resource
Workshop

present with the TREDIT.PAS or
TREDIT.DCU file when installing
the component in order to be used.

Next Time
Well this sure was a whole lotta
work for one simple TRightEdit
component, wasn’t it!

But we learned a lot in the
process: how to test the run-time
behaviour of components without
having to install them each time,
how to re-publish or de-publish
properties and how to give a
component its own palette bitmap.
The complete source code of the
TRightEdit component is of course
included on the free disk with this
issue.

In the next issue, we’ll build
some more components and take
a look at making a Component Help
File, including merging keywords
with the Delphi help file, so that
component users will be able to
access on-line help for our compo-
nents’ properties and events easily
whilst in design mode.

Bob Swart (you can email him on
100434.2072@compuserve.com) is
a professional software developer
using Borland Pascal, C++ and
Delphi. In his spare time, he likes
to watch video tapes of Star Trek
The Next Generation with his 1.5
year old son Erik Mark Pascal.


	Specialising
	Customisation
	Design Versus Run Time
	So What Have We Learned?
	Are We Done Yet?
	Adding New Properties
	Property Censorship
	TCustomXXX
	Component Palette Bitmaps
	Next Time

